Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Environ Sci Technol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573006

RESUMO

Electrochemical-induced precipitation is a sustainable approach for tap-water softening, but the hardness removal performance and energy efficiency are vastly limited by the ultraslow ion transport and the superlow local HCO3-/Ca2+ ratio compared to the industrial scenarios. To tackle the challenges, we herein report an energy-efficient electrochemical tap-water softening strategy by utilizing an integrated cathode-anode-cathode (CAC) reactor in which the direction of the electric field is reversed to that of the flow field in the upstream cell, while the same in the downstream cell. As a result, the transport of ions, especially HCO3-, is significantly accelerated in the downstream cell under a flow field. The local HCO3-/Ca2+ ratio is increased by 1.5 times, as revealed by the finite element numerical simulation and in situ imaging. In addition, a continuous flow electrochemical system with an integrated CAC reactor is operated for 240 h to soften tap water. Experiments show that a much lower cell voltage (9.24 V decreased) and energy consumption (28% decreased) are obtained. The proposed ion-transport enhancement strategy by coupled electric and flow fields provides a new perspective on developing electrochemical technologies to meet the flexible and economic demand for tap-water softening.

2.
Food Chem ; 449: 139225, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.

3.
Nat Commun ; 15(1): 2970, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582759

RESUMO

Photoelectrochemical seawater splitting is a promising route for direct utilization of solar energy and abundant seawater resources for H2 production. However, the complex salinity composition in seawater results in intractable challenges for photoelectrodes. This paper describes the fabrication of a bilayer stack consisting of stainless steel and TiO2 as a cocatalyst and protective layer for Si photoanode. The chromium-incorporated NiFe (oxy)hydroxide converted from stainless steel film serves as a protective cocatalyst for efficient oxygen evolution and retarding the adsorption of corrosive ions from seawater, while the TiO2 is capable of avoiding the plasma damage of the surface layer of Si photoanode during the sputtering of stainless steel catalysts. By implementing this approach, the TiO2 layer effectively shields the vulnerable semiconductor photoelectrode from the harsh plasma sputtering conditions in stainless steel coating, preventing surface damages. Finally, the Si photoanode with the bilayer stack inhibits the adsorption of chloride and realizes 167 h stability in chloride-containing alkaline electrolytes. Furthermore, this photoanode also demonstrates stable performance under alkaline natural seawater for over 50 h with an applied bias photon-to-current efficiency of 2.62%.

4.
J Infect ; 88(5): 106151, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582127

RESUMO

BACKGROUND: Immunological non-responders (INRs) among people living with HIV have inherently higher mortality and morbidity rates. The underlying immunological mechanisms whereby failure of immune reconstitution occurs in INRs require elucidation. METHOD: HIV-1 DNA and HIV-1 cell-associated RNA (CA-HIV RNA) quantifications were conducted via RT-qPCR. Transcriptome sequencing (RNA-seq), bioinformatics, and biological verifications were performed to discern the crosstalk between host and viral factors. Flow cytometry was employed to analyze cellular activation, proliferation, and death. RESULTS: HIV-1 DNA and CA-HIV RNA levels were observed to be significantly higher in INRs compared to immunological responders (IRs). Evaluation of CD4/CD8 ratios showed a significantly negative correlation with HIV-1 DNA in IRs, but not in INRs. Bioinformatics analyses and biological verifications showed IRF7/INF-α regulated antiviral response was intensified in INRs. PBMCs of INRs expressed significantly more HIV integrase-mRNA (p31) than IRs. Resting (CD4+CD69- T-cells) and activated (CD4+CD69+ T-cells) HIV-1 reservoir harboring cells were significantly higher in INRs, with the co-occurrence of significantly higher cellular proliferation and cell death in CD4+ T-cells of INRs. CONCLUSION: In INRs, the systematic crosstalk between the HIV-1 reservoir and host cells tends to maintain a persistent antiviral response-associated inflammatory environment, which drives aberrant cellular activation, proliferation, and death of CD4+ T-cells.

5.
Magn Reson Imaging ; 111: 84-89, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621550

RESUMO

Temporomandibular Joint Magnetic Resonance Imaging (TMJ MRI) is crucial for diagnosing temporomandibular disorders (TMDs). This study advances the use of inductively coupled wireless coils to enhance imaging quality in TMJ MRI. After investigating multiple wireless resonator configurations, including a 1-loop design with a loop diameter of 9 cm, a 2-loop design with each loop having a diameter of 7 cm, and a 3-loop design with each loop having a diameter of 5 cm, our findings indicate that the 3-loop configuration achieves the optimal signal-to-noise ratio (SNR), surpassing other wireless arrays. Bilateral deployment of wireless coils further amplifies SNR, enabling superior visualization of TMJ structures, particularly with the 3-loop design. This cost-effective and comfortable solution, featuring a detunable design, eliminates the need for system parameter adjustments. The study indicates broad adaptability across MRI platforms, enhancing TMJ imaging for routine clinical diagnostics of TMDs.

7.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.

8.
J Proteome Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626392

RESUMO

With the rapid expansion of sequencing of genomes, the functional annotation of proteins becomes a bottleneck in understanding proteomes. The Chromosome-centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome and find functional annotations for them. However, until now there are still 1137 identified human proteins without functional annotation, called uPE1 proteins. Sequence alignment was insufficient to predict their functions, and the crystal structures of most proteins were unavailable. In this study, we demonstrated a new functional annotation strategy, AlphaFun, based on structural alignment using deep-learning-predicted protein structures. Using this strategy, we functionally annotated 99% of the human proteome, including the uPE1 proteins and missing proteins, which have not been identified yet. The accuracy of the functional annotations was validated using the known-function proteins. The uPE1 proteins shared similar functions to the known-function PE1 proteins and tend to express only in very limited tissues. They are evolutionally young genes and thus should conduct functions only in specific tissues and conditions, limiting their occurrence in commonly studied biological models. Such functional annotations provide hints for functional investigations on the uPE1 proteins. This proteome-wide-scale functional annotation strategy is also applicable to any other species.

9.
J Anim Sci ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551023

RESUMO

Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n=9) and testis (n=6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89~82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.

10.
Angew Chem Int Ed Engl ; 63(17): e202401077, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38456382

RESUMO

Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.

11.
Comput Biol Med ; 172: 108296, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493600

RESUMO

PET/CT devices typically use CT images for PET attenuation correction, leading to additional radiation exposure. Alternatively, in a standalone PET imaging system, attenuation and scatter correction cannot be performed due to the absence of CT images. Therefore, it is necessary to explore methods for generating pseudo-CT images from PET images. However, traditional PET-to-CT synthesis models encounter conflicts in multi-objective optimization, leading to disparities between synthetic and real images in overall structure and texture. To address this issue, we propose a staged image generation model. Firstly, we construct a dual-stage generator, which synthesizes the overall structure and texture details of images by decomposing optimization objectives and employing multiple loss functions constraints. Additionally, in each generator, we employ improved deep perceptual skip connections, which utilize cross-layer information interaction and deep perceptual selection to effectively and selectively leverage multi-level deep information and avoid interference from redundant information. Finally, we construct a context-aware local discriminator, which integrates context information and extracts local features to generate fine local details of images and reasonably maintain the overall coherence of the images. Experimental results demonstrate that our approach outperforms other methods, with SSIM, PSNR, and FID metrics reaching 0.8993, 29.6108, and 29.7489, respectively, achieving the state-of-the-art. Furthermore, we conduct visual experiments on the synthesized pseudo-CT images in terms of image structure and texture. The results indicate that the pseudo-CT images synthesized in this study are more similar to real CT images, providing accurate structure information for clinical disease analysis and lesion localization.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Exposição à Radiação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
12.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446850

RESUMO

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

13.
Org Lett ; 26(12): 2495-2499, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38506235

RESUMO

The selective functionalization of remote C-H bonds in free primary amines holds significant promise for the late-stage diversification of pharmaceuticals. However, to date, the direct functionalization of the meta position of amine substrates lacking additional directing groups remains underexplored. In this Letter, we present a successful meta-C-H arylation of free primary amine derivatives using aryl iodides, resulting in synthetically valuable yields. This meta-selective C-H functionalization is achieved through a sequence involving native amino-directed Pd-catalyzed seven-membered cyclometalation, followed by the utilization of a norbornene-type transient mediator.


Assuntos
Aminas , Paládio , Aminas/química , Paládio/química , Estrutura Molecular , Catálise , Norbornanos/química
14.
J Magn Reson ; 360: 107650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417250

RESUMO

MRI is essential for evaluating and diagnosing various conditions affecting the temporomandibular joint (TMJ) and surrounding structures, as it provides highly detailed images that enable healthcare professionals to assess the joints and surroundings in great detail. While commercial MRI scanners typically come equipped with basic receive coils, such as the head receive array, RF coils tailored for specialized applications like TMJ MRI must be obtained separately. Consequently, TMJ MRI scans are often conducted using the head receive array, yet this configuration proves suboptimal due to the lack of specialized coils. In this study, we introduce a simple, low-cost, and easy-to-reproduce wireless resonator insert to enhance the quality of TMJ MRI at 1.5 T. The wireless resonator shows a significant improvement in signal-to-noise ratio (SNR) and noticeably better imaging quality than the head array alone configuration in both phantom and in vivo images.


Assuntos
Imageamento por Ressonância Magnética , Articulação Temporomandibular , Humanos , Imageamento por Ressonância Magnética/métodos , Articulação Temporomandibular/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Desenho de Equipamento
15.
Adv Sci (Weinh) ; 11(14): e2308371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311583

RESUMO

New insights are raised to interpret pathway complexity in the supramolecular assembly of chiral triarylamine tris-amide (TATA) monomer. In cosolvent systems, the monomer undergoes entirely different assembly processes depending on the chemical feature of the two solvents. Specifically, 1,2-dichloroethane (DCE) and methylcyclohexane (MCH) cosolvent trigger the cooperative growth of monomers with M helical arrangement, and hierarchical thin nanobelts are further formed. But in DCE and hexane (HE) combination, a different pathway occurs where monomers go through isodesmic growth to generate twisted nanofibers with P helical arrangement. Moreover, the two distinct assemblies exhibit opposite excited-state chirality. The driving force for both assemblies is the formation of intermolecular hydrogen bonds between amide moieties. However, the mechanistic investigation indicates that radical and neutral triarylamine species go through distinct assembly phases by changing solvent structures. The neutralization of radicals in MCH plays a critical role in pathway complexity, which significantly impacts the overall supramolecular assembly process, giving rise to inversed supramolecular helicity and distinct morphologies. This differentiation in pathways affected by radicals provides a new approach to manipulate chiral supramolecular assembly process by facile solvent-solute interactions.

16.
Comput Biol Med ; 170: 108000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232453

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by various pathological changes. Utilizing multimodal data from Fluorodeoxyglucose positron emission tomography(FDG-PET) and Magnetic Resonance Imaging(MRI) of the brain can offer comprehensive information about the lesions from different perspectives and improve the accuracy of prediction. However, there are significant differences in the feature space of multimodal data. Commonly, the simple concatenation of multimodal features can cause the model to struggle in distinguishing and utilizing the complementary information between different modalities, thus affecting the accuracy of predictions. Therefore, we propose an AD prediction model based on de-correlation constraint and multi-modal feature interaction. This model consists of the following three parts: (1) The feature extractor employs residual connections and attention mechanisms to capture distinctive lesion features from FDG-PET and MRI data within their respective modalities. (2) The de-correlation constraint function enhances the model's capacity to extract complementary information from different modalities by reducing the feature similarity between them. (3) The mutual attention feature fusion module interacts with the features within and between modalities to enhance the modal-specific features and adaptively adjust the weights of these features based on information from other modalities. The experimental results on ADNI database demonstrate that the proposed model achieves a prediction accuracy of 86.79% for AD, MCI and NC, which is higher than the existing multi-modal AD prediction models.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18 , Algoritmos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem/métodos
17.
J Am Chem Soc ; 146(3): 2122-2131, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190443

RESUMO

Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.


Assuntos
Aminas , Proteínas , Aminas/química , Ciclização , Proteínas/química , Tetrazóis/química , DNA , Química Click
18.
Natl Sci Rev ; 11(2): nwad149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213529

RESUMO

Gas diffusion electrodes (GDEs) mediate the transport of reactants, products and electrons for the electrocatalytic CO2 reduction reaction (CO2RR) in membrane electrode assemblies. The random distribution of ionomer, added by the traditional physical mixing method, in the catalyst layer of GDEs affects the transport of ions and CO2. Such a phenomenon results in elevated cell voltage and decaying selectivity at high current densities. This paper describes a pre-confinement method to construct GDEs with homogeneously distributed ionomer, which enhances mass transfer locally at the active centers. The optimized GDE exhibited comparatively low cell voltages and high CO Faradaic efficiencies (FE > 90%) at a wide range of current densities. It can also operate stably for over 220 h with the cell voltage staying almost unchanged. This good performance can be preserved even with diluted CO2 feeds, which is essential for pursuing a high single-pass conversion rate. This study provides a new approach to building efficient mass transfer pathways for ions and reactants in GDEs to promote the electrocatalytic CO2RR for practical applications.

19.
PLoS One ; 19(1): e0296374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266004

RESUMO

In the context of the new economic development in the post-pandemic era, "play" labor as an important component of digital work has become an inexhaustible driving force for the growth of the digital economy. Previous research has shown that "play" labor, as an emerging business model, can effectively promote the growth of the digital economy. However, there is a relative lack of research on the dynamic evolutionary game between "play" labor suppliers represented by game studios and online gaming companies. In this study, we applied the theoretical approach of dynamic evolutionary game theory to establish a game model depicting the evolution of both parties involved in the virtual economy of online gaming. The aim was to investigate the strategic selection mechanisms and influencing factors for game studios and online gaming companies participating in the virtual economy of online gaming. By analyzing the evolutionary game path, equilibrium points, and factors influencing the evolutionary game outcome, as well as conducting numerical simulation analysis using Matlab software, we found that the incremental gains and costs resulting from the strategic choices of online gaming companies and game studios in engaging in the virtual economy of online gaming affect the evolutionary outcomes. In addition, for the probability ratio of online game studios and online game companies choosing to participate in the virtual economy of online games, whether it is online game studios or online game companies, the larger the initialization ratio, the more likely the evolution result is to develop in a mutually beneficial direction. After an in-depth analysis and discussion of the evolutionary game results, relevant policy recommendations were proposed. We hope to provide a reference for promoting online game companies to strengthen the adequate supervision of online game studios' participation in the virtual economy of online games and optimize and improve the virtual economic environment.


Assuntos
Desenvolvimento Econômico , Trabalho de Parto , Gravidez , Feminino , Humanos , Comércio , Simulação por Computador , Teoria do Jogo
20.
Org Lett ; 26(5): 1094-1099, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38277138

RESUMO

Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.


Assuntos
DNA , Biblioteca Gênica , Ácidos Carboxílicos , Bibliotecas de Moléculas Pequenas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...